Investigation of Anti-Cancer Nano Drugs’ Effects’ Trend on Human Pancreas Cancer Cells and Tissues Prevention, Diagnosis and Treatment Process under Synchrotron and X-Ray Radiations with the Passage of Time Using Mathematica

Alireza Heidari*

Faculty of Chemistry, California South University, California, USA

Image Article

In the current image article, we investigate anti-cancer Nano drugs’ effects’ trend on human pancreas cancer cells and tissues prevention, diagnosis and treatment process under synchrotron and X-Ray radiations with the passage of time using Mathematica (Figure 1) [1-90]. Furthermore, we have computationally simulated medical, medicinal, clinical, pharmaceutical and thera-

Figure 1: Different high-resolution various angles images of anti-cancer Nano drugs’ effects’ trend on human pancreas cancer cells and tissues prevention, diagnosis and treatment process under synchrotron and X-Ray radiations with the passage of time [1-90].

Copyright: © 2017 Heidari A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
peutics oncology of human pancreas cancer translational Nano drugs delivery treatment process trend under synchrotron and X-Ray radiations with the passage of time using Mathematica (Figure 2) [1-90].

It can be clearly and fortunately concluded that translational Nano drugs delivery treatment process possesses an acceptable and reasonable positive trend after a hundred days.

References


7. Alireza Heidari (2016) Study of Irradiations to Enhance the Induces the Dissociation of Hydrogen Bonds between Peptids oncology of human pancreas cancer translational Nano drugs delivery treatment process trend under synchrotron and X-Ray radiations with the passage of time using Mathematica (Figure 2) [1-90].

Figure 2: Computational simulations of medical, medicinal, clinical, pharmaceutical and therapeutics oncology of human pancreas cancer translational Nano drugs delivery treatment process trend under (a) Synchrotron (after 10 days); (b) X-Ray (after 10 days); (c) Synchrotron (after 100 days); (d) X-Ray (after 100 days) radiations using Mathematica [1-90].

*Corresponding author: Alireza Heidari, Faculty of Chemistry, California South University, California, USA, E-mail: Scholar.Researcher.Scientist@gmail.com

Received: September 11, 2017; Accepted: October 14, 2017; Published online: October 16, 2017


A Glycobiological Study. J Glycobiol 5: e111.

MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) as Hydrogen Storage. Struct Chem Crystallogr Commun 2: 1.

Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Ozone (O3) Using Soave-


18. Alireza Heidari (2016) Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4−) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat 7: 292.

19. Alireza Heidari (2016) Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J 7: e112.


33. Alireza Heidari (2016) Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Ozone (O3) Using Soave-


